Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2.
نویسندگان
چکیده
The overexpression of the epidermal growth factor receptor (EGFR) and HER-2 underpin the growth of aggressive breast cancer; still, it is unclear what governs the regulation of these receptors. Our laboratories recently determined that the Y-box binding protein-1 (YB-1), an oncogenic transcription/translation factor, induced breast tumor cell growth in monolayer and in soft agar. Importantly, mutating YB-1 at Ser(102), which resides in the DNA-binding domain, prevented growth induction. We reasoned that the underlying cause for growth attenuation by YB-1(Ser(102)) is through the regulation of EGFR and/or HER-2. The initial link between YB-1 and these receptors was sought by screening primary tumor tissue microarrays. We determined that YB-1 (n = 389 cases) was positively associated with EGFR (P < 0.001, r = 0.213), HER-2 (P = 0.008, r = 0.157), and Ki67 (P < 0.0002, r = 0.219). It was inversely linked to the estrogen receptor (P < 0.001, r = -0.291). Overexpression of YB-1 in a breast cancer cell line increased HER-2 and EGFR. Alternatively, mutation of YB-1 at Ser(102) > Ala(102) prevented the induction of these receptors and rendered the cells less responsive to EGF. The mutant YB-1 protein was also unable to optimally bind to the EGFR and HER-2 promoters based on chromatin immunoprecipitation. Furthermore, knocking down YB-1 with small interfering RNA suppressed the expression of EGFR and HER-2. This was coupled with a decrease in tumor cell growth. In conclusion, YB-1(Ser(102)) is a point of molecular vulnerability for maintaining the expression of EGFR and HER-2. Targeting YB-1 or more specifically YB-1(Ser(102)) are novel approaches to inhibiting the expression of these receptors to ultimately suppress tumor cell growth.
منابع مشابه
HER-2 Suppression of the Epidermal Growth Factor Receptor and Disruption of the Y-Box Binding Protein-1 Results in
The overexpression of the epidermal growth factor receptor (EGFR) and HER-2 underpin the growth of aggressive breast cancer; still, it is unclear what governs the regulation of these receptors. Our laboratories recently determined that the Y-box binding protein-1 (YB-1), an oncogenic transcription/ translation factor, induced breast tumor cell growth in monolayer and in soft agar. Importantly, ...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملBreast Carcinoma; Human Epidermal Growth Factor Receptor-2 (HER-2) and Grading Correlation
Introduction: Overexpression of Human Epidermal Growth factor Receptor-2 (HER-2) is one of the most important prognostic and predictive factors of breast cancer, observed in 25% - 30% of breast carcinoma patients leading to poor prognosis and feasible anti HER-2 antibody drugs. The objective of this study was to evaluate the HER-2 frequency in target population and its correlat...
متن کامل2D-QSAR and docking studies of 4-anilinoquinazoline derivatives as epidermal growth factor receptor tyrosine kinase inhibitors
Introduction: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor derivatives play an important role in the treatment of cancer. We aim to construct 2D-QSAR models using various chemometrics using 4-anilinoquinazoline-containing EGFR TKIs. In addition, the binding profile of these compounds was evaluated using a docking study. Materials and Methods: In this study, 122 compounds of...
متن کاملAltered Expression of Epidermal Growth Factor Receptor (EGFR) in Glioma
EGFR is a key molecule in cancer cells. EGFR signaling was shown to promote tumor cell proliferation and survival, invasion and angiogenesis and mediate resistance to treatment, including ionizing radiation in preclinical models. We extracted proteins from astrocytoma (III and IV) oligodendroglioma(IV) tumors and normal brain tissues and then evaluated the protein purity by Bradford test ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 66 9 شماره
صفحات -
تاریخ انتشار 2006